Search results

Search for "sulfur doping" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • sulfur. The EDX mappings verify the largely homogeneous distribution of all elements. Nitrogen doping as well as sulfur doping through the proposed soft-templating approach were successful. BET measurements were carried out to analyze the porosity of the carbon felts. In Figure 4, a comparison between
PDF
Album
Full Research Paper
Published 28 May 2019

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • :3 by ball-milling at 350 min−1 for 3 h to obtain the sulfur composite precursor. The S/ZnO@NCNT composite was obtained by heating the precursor at 155 °C for 10 h, in argon flow with a heating rate of 5 °C·min−1. The sulfur-doping method was described in our previous study [33]. Materials
PDF
Album
Full Research Paper
Published 06 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • the conduction band. Sulfur doping has also been shown to enhance the photocatalytic activity under visible-light illumination. Sulfur can be doped as an anion (S2−), replacing oxygen, or as a cation (S6+), thus replacing titanium [37][38]. Substitutional doping of sulfur in TiO2 narrows the band gap
PDF
Album
Full Research Paper
Published 04 Jun 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • was fabricated by a one-pot impregnation co-precipitation method as shown in Figure 12a. The S doping was introduced to narrow the band gap of g-C3N4 by stacking its 2p orbitals on the valence band of bare g-C3N4 which eventually contributes to increase the efficiency. Furthermore, the sulfur doping
PDF
Album
Review
Published 03 Aug 2017

Biomolecule-assisted synthesis of carbon nitride and sulfur-doped carbon nitride heterojunction nanosheets: An efficient heterojunction photocatalyst for photoelectrochemical applications

  • Hua Bing Tao,
  • Hong Bin Yang,
  • Jiazang Chen,
  • Jianwei Miao and
  • Bin Liu

Beilstein J. Nanotechnol. 2014, 5, 770–777, doi:10.3762/bjnano.5.89

Graphical Abstract
  • -doped graphitic carbon nitride (CNS) nanosheets. During the synthesis, sulfur could be introduced as a dopant into the lattice of carbon nitride (CN). Sulfur doping changed the texture as well as relative band positions of CN. By growing CN on preformed sulfur-doped CN nanosheets, composite CN/CNS
  • : graphitic carbon nitride (g-C3N4); heterojunction; photoelectrochemical; photocatalysis; sulfur doping; Introduction Over the past few years, graphitic carbon nitride (CN) has attracted significant research attention in visible-light-driven photocatalysis because of its unique physical and chemical
  • )3 (tertiary sulfur) and C–S(O)–C (secondary sulfur), respectively, providing a compelling evidence of sulfur doping (sulfur is introduced into CN through substituting lattice nitrogen with sulfur on both tertiary and secondary nitrogen sites) [21]. The higher intensity for the peak centered at 163.5
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2014
Other Beilstein-Institut Open Science Activities